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Abstract—Motivational speech has emerged as a popular audiovi-
sual phenomenon within Western subcultures, conveying optimal
strategies and principles for success through expressive, high-
energy delivery. The present paper artistically explores methods
for synthesizing the distinctive prosodic patterns inherent to
motivational speech, while critically examining its sociocultural
foundations. Drawing on recent advances in emotion-controllable
text-to-speech (TTS) systems and speech emotion recognition
(SER), we employ deep learning models and frameworks to
replicate and analyze this genre of speech. Within our proposed
architecture, we introduce a one-dimensional motivational factor
derived from high-dimensional emotional speech representations,
enabling the control of motivational prosody according to inten-
sity. Situated within broader discourses on self-optimization and
meritocracy, Motivational Speech Synthesis contributes to the field
of emotional speech synthesis, while also prompting reflection
on the societal values embedded in such mediated narratives'.

Index Terms—text-to-speech (TTS), speech emotion recognition
(SER), emotional speech synthesis, motivational speech, artistic
research

I. INTRODUCTION

Within the increasing popularity of fitness and entrepreneur-
ship in Western subcultures, video clips of so-called mo-
tivational speech received millions of views across social
media. Usually, those audiovisual artifacts show excerpts from
presentations or interviews of people—in most cases male
business leaders, authors, and other influential figures—who
narrate about optimal instructions, principles, and strategies
for success. Paired with epic and emotional background music,
these videos aim to act as a vehicle for self-motivation and
goal pursuit. With a primary target group of men, success is
often tied to wealthiness, professional growth, or appeal to
women while the same is obstructed by characteristics such
as weakness, fragility, or discontinuity. Through motivational
speech, a listener’s ultimate goal is to obtain and shape a
mindset which ensures them to be on the right path for
achievement. Motivational speech emerges as a phenomenon
in a society of self-optimization, embedded in the ethos of
constant productivity, self-isolation, competition, and meritoc-
racy.

Focusing on the human voice as the primary medium within
this audiovisual subculture, its characteristic prosodic patterns
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play a decisive role in the appearance and perception of
motivational speech. With Motivational Speech Synthesis, we
therefore aim to

1) replicate those specific prosodic features
2) while creating a space for artistic reflection to extract
the underlying attitudes of this subculture as a whole.

Correlating with the generalization process of one universal
way to success, as well as the presence of an anticipated
forward movement into a listener’s future in motivational
speech itself, we use machine learning techniques to average
web-scraped motivational speech into a text-to-motivational-
speech model adjustable with a one-dimensional motivational
factor.

This concept of a motivational factor achieves fine-grained
intensity control over motivational speech prosody during in-
ference. Utilizing dimensionality reduction methods, we derive
a mapping from a three-dimensional emotional representation
of speech into a one-dimensional scale, ranging from 0 (low
motivational factor) to 1 (high motivational factor). Conse-
quently, the validity and applicability of capturing motivational
speech prosody through this dimensional compression prompts
our first research question: RQ1: Can higher-dimensional
emotional relationships in speech be effectively compressed
into a singular one-dimensional scale representing motiva-
tional intensity?

Representing the promise of social mobility embodied by
motivational speech subculture, our motivational factor aligns
with attitudes like “The harder you work, the more you
can get”. Despite this emphasis on individual determination,
OECD data suggests that income, education, and occupational
status are still strongly shaped by one’s family background
[11]. Motivational Speech Synthesis addresses aspects of our
work ethic and how we approach our goals and challenges in
life, while raising questions on how we define “success” at
all.

Motivated by this artistic goal and inspired by the realm of
emotional speech synthesis with its ongoing efforts to repro-
duce speech with increasing emotional nuance and expression,
we explored and conceptualized different approaches for emo-
tional controlled text-to-speech (TTS) generation. Spanning
across different machine learning frameworks and speech



emotion recognition (SER) systems, we present multiple im-
plementation possibilities as well as one realized motivational
TTS architecture.

Even though Motivational Speech Synthesis strives for artistic
reflection, we want to emphasize, that this project does not
aim to judge any person actually benefiting from motivational
speech or similar phenomena. We don’t expose or look at
people consuming motivational speech, but rather focus on
deconstructing underlying circumstances and attitudes of those
narratives, which arrive as symptoms of a society driven by
growth and success.

II. RELATED WORK

Recent advancements in emotion-aware text-to-speech and
speech emotion recognition have significantly enhanced the
field of emotional speech synthesis. Although many state-
of-the-art models—such as XTTS-v22, MetaVoice>, Parler-
TTS [7], or StyleTTS 2 [9]—are capable of producing high-
quality speech, few offer the ability to generate speech with
specific emotional inflections. Although voice cloning has
already reached a high level of sophistication, the integration
of prosodic variation into TTS systems remains a critical
step towards synthesized, human-like sounding speech. By
incorporating emotional nuances, these systems can improve
mimicking the subtleties of human expression, further mini-
mizing the gap between artificial and human speech.

The model proposed by Cho et al. [4] allows emotion intensity
control along with style transfer, while EmoKnob [2] provides
fine-grained emotion modulation using few-shot samples of
arbitrary emotions. After comparing the previously mentioned
architectures and TTS frameworks, EmoKnob was the most
suitable solution for our purposes. By building on the voice
cloning-based TTS model MetaVoice, the authors established
a speaker representation space. Here, an emotional embedding
is created by calculating the difference between an emotional
sample and a corresponding neutral sample, both spoken by
the same speaker. Subsequently, this embedding is added to
the speaker representation space.

In the domain of SER, emotions are primarily represented in
two ways: as discrete categories (e.g., happy, sad, angry) [5] or
as positions in a continuous emotion space usually defined by
three dimensions: valence, arousal, and dominance. The scales
within this 3D emotion model range from negative to positive
emotions (valence), calm to stimulated emotions (arousal), and
submissive to dominant emotions (dominance) [17]. As our
proposed motivational factor does not fit into any of these
discrete categories, but rather spans across this 3D space, our
research focused on architectures that embed emotions in this
continuous space.

One accessible model that explores the potential of
transformer-based architectures for improving SER by em-
bedding analyzed speech into a 3D emotional space is a

Zhttps://github.com/coqui-ai/TTS
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fine-tuned version of wav2vec 2.0 by Wagner et al. [18].
Another approach we examined is emotion2vec [10], which
provides a speech emotion representation model in a higher
dimension in addition to a SER foundation model classifying
emotions into discrete categories. Due to limited availability
of labeled data for emotion recognition [6], both models
use self-supervised learning frameworks. Here, a common
approach involves using pretrained self-supervised models,
such as wav2vec 2.0 [1], which are trained on large-scale
speech datasets, and fine-tuning them for emotion recognition
tasks [12]. This methodology allows overcoming data scarcity
by utilizing the rich representations learned from vast amounts
of unlabeled speech data, thereby improving the performance
of SER systems.

III. METHOD
A. Preprocessing

Motivational speeches on social media platforms like YouTube
exhibit a consistent structure, typically comprising curated
excerpts from coaches, public figures (e.g., actors or pro-
fessional athletes), accompanied by dramatic instrumental
music. To capture the speech content of these videos, a
multi-stage preprocessing pipeline (see Figure 1) is employed.
After collecting audio data from multiple YouTube channels
dedicated to motivational content, the speech components are
isolated using the music source separation algorithm Demucs
[15].
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Fig. 1. Overview of the data processing pipeline.

Once separated, the extracted speech undergoes further refine-
ment, including speech enhancement with ai|coustics’ pro-
prietary model called Lark* and transcription via Whisper
[14].

B. Model architecture

After careful evaluation of existing text-to-speech (TTS) mod-
els capable of emotional control over generated audio, we
decided to base our architecture upon established approaches.
Many contemporary models operate on higher-dimensional
emotional representations, such as those produced by the
aforementioned SER models [18, 10] to generate emotionally
expressive speech. We recognized that this characteristic al-
lows for the implementation of our motivational factor without
the necessity of developing an entirely new TTS architecture.
Specifically, given that an appropriate dimensionality reduction
method exists, higher-dimensional emotional representations
can be mapped onto a one-dimensional motivational factor.
This factor ranges continuously from O, indicating a low
motivational state, to 1, indicating a high motivational state.

“https://developers.ai-coustics.com/documentation



Subsequently, the derived motivational factor can serve di-
rectly—or indirectly, by mapping it to a higher dimension—as
a conditioning parameter during model training or as an input
condition specified by the user during inference.

Once we defined the three-dimensional VAD space as our high-
dimensional representation, we projected our motivational
speech corpus onto it using the inference model proposed by
Wagner et al. [18]. To represent our motivational factor as a
single dimension, we therefore reduced these three dimensions
into one by applying the UMAP algorithm, resulting in the
desired projection ranging from O to 1.

We propose three distinct methodological approaches
for integrating the motivational factor into existing TTS
architectures, including a concrete implementation based on
the EmoKnob framework.

1) Dimensional emotion conditioning: Multiple systems pro-
posed by Li and Chen [8], Qi et al. [13], and Cho et al. [3,
4] aim to achieve controllable emotions in TTS generation by
using pretrained SER frameworks, within their architectures.
In our approach, this serves as a foundation for indirectly
controlling the desired motivational factor by learning or
defining an inverse mapping from its one-dimensional value to
a higher-dimensional emotional representation. The resulting
values can then serve as conditioning inputs during inference,
enabling speech synthesis that reflects the intended style (see
Figure 2).
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Fig. 2. Proposed general model architecture with dimensional emotion
conditioning. Dashed lines represent inference, solid lines training.

2) Reference Audio Selection: Other models, such as XTTS
v2, enable guidance during inference through the use of
reference audio, often used for voice cloning. By selecting
reference audio corresponding to the given value, this allows
us to model the motivational factor indirectly (see Figure

3). In combination with fine-tuning the model on our moti-
vational speech corpus, this approach enables single-speaker
synthesis with averaged motivational prosody. Furthermore, a
selection algorithm can be designed to introduce controlled
variability by randomly choosing different reference audio
samples corresponding to a given motivational factor from
the dataset. Simultaneously, consistency can be achieved by
reusing selected reference audio samples across multiple gen-
eration tasks.
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Fig. 3. Proposed model architecture with TTS model that takes a reference
audio. Dashed lines represent inference, solid lines training.

3) Speaker Embedding Averaging and Selection: In this ap-
proach, speaker embeddings—which encode stylistic charac-
teristics of a selected speaker or reference audio within a high-
dimensional feature space—are provided to the model during
inference to guide the synthesis accordingly. By generating
distinct speaker embeddings corresponding to discrete steps
within a fitting range for the motivational factor, these em-
beddings can also be used indirectly to represent different
motivational factors. During inference, an embedding nearest
to the specified motivational input value is selected to guide
the speech production (see Figure 4). In our implementation,
we adopted EmoKnob [2] as our TTS model and computed
averaged speaker embeddings in increments of 0.05. For each
increment, a representative speaker embedding was obtained
by calculating the mean of the k-nearest neighbor (kNN=400)
embeddings within the speaker embedding space.

IV. RESULTS

Among those three proposed methods for synthesizing mo-
tivational speech, we implemented the approach based on
EmoKnob, as detailed in section III-B3. Our chosen architec-
ture involved generating averaged speaker embeddings, con-
stituting a lightweight modification of the existing MetaVoice
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Fig. 4. Proposed model architecture with EmoKnob TTS model that uses
motivational factor directly at inference and a reference audio averaged from
the motivational speech corpus

model without necessitating computationally intensive training
or fine-tuning procedures.

During the development phase, we compiled an extensive
motivational speech dataset comprising 414,024 data points
with a total duration of approximately 371 hours.

To ensure a corpus of sufficient quality for speech synthe-
sis, the preprocessing pipeline incorporated essential stages
such as voice separation, speech enhancement, and transcrip-
tion.

Figure 5 presents a visualization of a subset of n = 2000
audio data points, randomly selected along the motivational
factor dimension, and projected into the VAD space. The
resulting distribution reveals an arch-shaped trajectory, extend-
ing from regions of lower valence, arousal, and dominance
toward higher arousal and dominance. This latent structure
was effectively captured using the dimensionality reduction
technique UMAP, supporting its suitability for representing
the data along a single motivational factor.

The speech synthesized by EmoKnob was quantitatively eval-
uated using two metrics. First, the model achieved an average
Word Error Rate (WER) of 0.21 utilizing Whisper [14] in its
small version, which was being applied to motivational quotes
of varied lengths. It should be noted that this WER value
represents a conservative estimate, since it accounts for com-
bined errors from both the synthesis and transcription model.
Additionally, the naturalness of the synthesized audio was
assessed using UTMOS [16] yielding an average Naturalness
Mean Opinion Score (nMOS) of 3.22 out of 5, indicating fair
perceived quality by human listeners. The second proposed
approach, involving high-dimensional emotional conditioning
(section III-B1), could not be practically evaluated due to
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Fig. 5. Visualization of 2000 dataset audio points embedded into VAD space.
Motivational factor representation via colormap.

limitations in available models and architectures.

V. CONCLUSION

Our research successfully introduced and evaluated a novel
method for synthesizing motivational speech using averaged
speaker embeddings within a modified EmoKnob architecture.
By demonstrating the effective compression of dimensional
emotional relationships into a singular motivational intensity
scale, the developed method provides an intuitive control
mechanism for adjusting motivational prosody in speech syn-
thesis.

While the synthesized outputs showed acceptable intelligibil-
ity and naturalness, several limitations were noted regarding
transcription accuracy and audio quality. Additionally, prac-
tical barriers encountered in implementing alternative high-
dimensional emotional conditioning approaches highlight the
necessity for improving the accessibility and maintainability of
computational resources in emotional speech synthesis.

Further analysis on how well the motivational prosody is
captured in our motivational factor may be necessary to
validate its perceptual relevance across diverse listener groups
and application contexts. This includes exploring correlations
between the motivational factor and human emotional cues,
as well as testing its adaptability across different speaker
identities and linguistic content.

We hope that our proposed architectures will contribute to
future research not only in the modeling of motivational
speech, but also in the broader context of emotion-specific
speech synthesis across various tasks and domains.
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